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BY N. Jo~L* ~_nD ISABEL G~AYCOCaEAt 

Laboratorio de Cristalografia, Facultad de Filosofia, Universidad de Chile, Cazilla 147, Santiago, Chile 

(Received 10 August 1956 and in revised form 12 February 1957) 

A method is given for determining the orientation of the optical indicatrix of microscopic crystals 
directly from the 'extinction curve', which is obtained by means of a very convenient one-axis 
stage goniometer. 

The three axes of the indicatrix appear on the projection of the extinction curve as three points 
X, Y, Z, which form a 'triangle'. The geometrical determination of this triangle leads in general 
to two solutions: the 'true triangle' and a 'ghost triangle'. The latter has some special properties 
by which it may  be distinguished from the 'true triangle', and thus the three axes of the ellipsoid 
may be determined. Each of the three axes can then be identified. 

The possibility of the method was first studied by means of a graphical survey of numerous 
typical cases. Accuracy tests and a brief mathematical t reatment  of the problem are also given. 

Resumen en Espafiol.----En este trabajo so da un m6todo para  determinar la orientaci6n de la 
indicatriz 6ptica de cristales microsc6picos directamente a partir  do la 'curva de extinci6n', haciendo 
use de un pequefio goni6metro de platina muy conveniente. 

Los tres ejes de la indicatriz aparecen en la proyecci6n de la curva de extinci6n come tres puntos 
X, Y y Z que forman un 'tri~,ngulo'. La determinaci6n geom4trica de este tri~ngulo conduce en 
general a dos soluciones: el 'tri~ngulo verdadero' y un 'tri~ngulo fantasma' .  Este ffltimo tiene 
algunas propiedades especiales que permiten su identificaci6n, y per consiguiente, la determinaci6n 
de los tres ejes del elipsoide. A continuaci6n, cada uno de los tres ejes puede ser identificado. 

La posibilidad del m6todo fu6 analizada primero a travds do un estudio gr&fico de numerosos cases 
tipicos. So da tambi6n algunas pruebas sobre la precisi6n del m6todo y un breve tratamiento mate- 
m~tico del problema. 

1. Introduction 

The optical investigation by  means of the polarizing 
microscope of small single crystals which are to be set 
af terwards  in a diffraction camera for X - r a y  crystallo- 
graphic work is great ly  facil i tated by  the use of a one- 
axis stage goniometer,  such as the  one designed by  
:Bernal & Carlisle (1947). This ins t rument  is used with 
its axis perpendicular  to the microscope axis, and 
parallel to the  vibrat ions t ransmi t ted  by the polarizer. 
The crystal  is s tuck with shellac (or any  other similar 
adhesive) to a thin glass fibre, which is in tu rn  fastened 
to the end of the goniometer axis with something like 
plasticine. 

Wi th  the  help of this very  convenient ins t rument  a 
method was developed for determining the  optical 
indicatr ix of small single crystals (Joel, 1950, 1951). 
The method is based on the  'extinction curve'  of the  
crystal  mounted  on the  goniometer. The extinction 
curve is the locus-- in  the  stereogram---of the extinc- 
t ion directions of the crystal  when the la t ter  is ro ta ted  
about  an a rb i t r a ry  but  fixed axis, which is set per- 
pendicular  to the microscope axis. 

* Now at the Crystallographic Laboratory, Cavendish 
Laboratory, Cambridge, England. 

t Now Mrs I. Wittke. 

A description of the  extinction curve is given in 
§ 2, especially in pa ragraphs  (i) and (ii). 

The experimental  determinat ion of the  extinction 
curve for one par t icular  sett ing is done by reading the  
positions 01 and  02 of the  microscope stage which give 
extinction of the crystal  between crossed nicols, for 
different positions ~ of the  stage goniometer,  e.g. 
every 10 °. 

These readings can be pu t  into a stereographic 
projection as shown in Fig. 3(c) and thus  the extinc- 
tion curve is obtained (see also pa ragraph  (a) of § 3). 
I t  was also shown t h a t  this curve contains the points 
which represent  the  X, Y and Z axes of the ellipsoid, 
and it was indicated how these three axes could be 
determined by  finding in the  crystal  the direction of 
m a x i m u m  or min imum refractive index. 

The shape of the extinction curve for a given 
rota t ion axis also shows the way in which the crystal  
selects the two sets of vibrat ion directions associated 
with t ha t  par t icular  setting. 

Fur the r  investigation of this subject  showed t h a t  
there are a number  of interesting facts about  these 
extinction curves wor thy  of mention,  as well as some 
improvements  in the  method  of s tudying the indi- 
catrix.  This applies par t icular ly  to those cases in 
which good interference figures cannot  be observed. 

A 0  I0 28 



400 'EXTINCTION CURVE' IN THE INVEST 

The validity of the new method is discussed in §§ 2, 4 
and 5; but  all the experimental details are given in 
§3.  

In this paper reference is made to biaxial crystals, 
since the problem of determining the orientation of the 
indicatrix of uniaxial crystals directly from the ex- 
tinction curve has already been solved (Joel, 1950). 

2. On the poss ibi l i ty  of determining  the orientation 
of the indicatrix  directly f rom the extinction curves  

The problem of locating the three points X, Y and Z 
on the extinction curve may be stated in a geometrical 
form as follows: to determine on the extinction curve 
three points such tha t  they should all be at  an angular 
distance of 90 ° from each other. This set of three points 
will be referred to in this paper as the 'triangle'. If it 
could be shown tha t  there is only one such triangle--- 
apart  from the obvious repetitions due to symmetry  
and orthogonal i ty-- i t  would appear very easy to 
determine it graphically, either on the stereographic 
projection, or on a sphere. This would mean that  the 
orientation of the three axes of the indicatrix had been 
found. 

Unfortunately,  the equations tha t  would lead to the 
determination of the triangle (or triangles) are ex- 
tremely complicated. We tried to solve the problem 
using Euler angles, and obtained a set of three equa- 
tions of the ninth degree. With  Cartesian coordinates 
we obtained a set of six algebraic equations involving 
six unknowns, three of them of the third degree and 
the other three of the second degree. 

I t  was clear to us tha t  there was no hope in this 
direction, but  we noticed tha t  the number of solutions 
would have to be finite. And as to the real solutions, 
they might be few in number. 

The problem was therefore tackled graphically, and 
it was decided to draw the extinction curve for dif- 
ferent crystals and in each of them for different set- 
tings on the goniometer. 

I t  was shown in the 1951 paper tha t  if the curves of 
constant refractive index--called equivibration curves 
by Wright (1923) and Phemister (1954)--of a crystal 
are drawn at regular intervals radially projected on 
to a unit sphere, and if the direction of the goniometer 
axis be indicated by a point Pc on this sphere, the 
extinction curve is the locus of the points at which 

the great circles through P0 are tangent to the curves 
of constant refractive index. We would like to state 
now that  it is not necessary to draw these curves of 
constant refractive index, either on a sphere or in a 
projection, if use is made of the Biot-Fresnel construc- 
tion in the following way: 

Consider a plane wave which travels through a 
crystal in any given direction: draw the diametral 
plane of the indicatrix parallel to the wave front; 
this plane is intersected by the two circular sections 
of the indicatrix along two lines, and the angles formed 

I G A T I O N  OF T H E  O P T I C A L  I N D I C A T R I X  

by these two lines are bisected by the two vibration 
directions associated with the given wave normal. 

Therefore it was sufficient to draw in the stereo- 
graphic projection the two circular sections of the 
crystal and the point P0 (Fig. 1). On a set of great 

X 

Fig. 1. The way the extinction curves were drawn. Broken 
lines: circular sections. Dotted lines: great circles through 
To- On these circles the points which are half-way between 
the circular sections are marked; the locus of these points 
is the extinction curve. In this diagram the curve through 
Y and Z is the equatorial curve, and the one through X 
and P0 is the polar curve. (Only the upper half is shown in 
the projections of Figs. 1-5.) 

circles through P0, taken at  convenient intervals, 
the two points which are half way between the circular 
sections were marked; and in this way the extinction 
curve for tha t  particular position of Pc relative to 
the indicatrix was obtained. Thus, an extinction curve 
will depend only on the optical angle 2 V of the crystal 
and the direction of the goniometer axis relative to 
the two circular sections (or the two optic axes) of the 
crystal. 

Drawings were made for 2 Vv = 90 °, and 2 V~ = 46 ° 
(positive)--which obviously also accounts for 2V r = 
134 ° (negative). In  the actual experimental procedure, 
the goniometer axis always lies in the plane of the 
microscope stage; tha t  is, Po is always on the projec- 
tion circle, while the points X, Y and Z have any 
posi t ion--mutual ly perpendicular, of course. In our 
drawings, on the other hand, it  proved much more 
convenient to keep points X and Y on the projection 
circle---which will project Z on the centre of this circle 
- - a n d  to move the point Po about in some regular 

manner so as to cover all typical cases. 
For each position of Pc the extinction curve con- 

sists of: 
(i) A curve tha t  runs round the sphere and which 

is itself centrosymmetric; this will be called the 
'equatorial curve', although it may  differ considerably 
from a great circle. 

(ii) A set of two smaller curves-- their  largest 
angular diameter never exceeds 90°---which are mutu- 
ally symmetric relative to the centre of the sphere; 
these will be called 'polar curves' (Fig. 1). 
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There are some interesting features of the extinction 
curves, which will be useful at a later stage and which 
are a consequence of the well known fact that  the 
refractive indices associated with the vibration direc- 
tions permitted by the crystal on rotb, tion about its 
axis fall into two groups" one limited to the range c~ 
to fl, and the other to the range fl to 7; furthermore, 
one of these ranges is always fully covered, while the 
other does not in fact necessarily reach the fl end of 
the interval. 

These features are: first, the extinction curve does 
not go through the circular sections, except at their 
two common points Y and Y, and, if we consider the 
dihedral angles formed by the two circular sections, 
the polar curves are confined to the two dihedrals 
(one in each) which contain P0, while the equatorial 
curve is confined to the other two; secondly, of the 
three points X, Y and Z, two are on the equatorial 
curve and one on the polar curve; and thirdly, the 
point Y is always on the equatorial curve and the 
point Po is always on the polar curve. 

A limiting case arises when P0 is on a circular 
section of the crystal (in other words, when the plane 
perpendicular to the rotation axis P0 contains one of 
the optic axes of the crystal)" the equatorial curve and 
the two polar curves join at four singular points which 
are on the same circular section; the extinction curve 
includes this circular section, in such a way that  one 
half of the latter is covered by the equatorial curve 
and the other half by the polar curves. 

As the extinction curves are centrosymmetric, in 
all the diagrams (Figs. 1-5) only the upper half is 
drawn. Therefore, there is only half of the equatorial 
curve, and parts of the polar curves which together 
correspond to one of them. I t  is quite easy to imagine 
the remainder of the extinction curve. This will 
simplify the figures, as in some of them several 
positions of P0 are shown in each drawing, with as 
many extinction curves (half an equatorial curve and 

one polar curve for each). In other cases, the equatorial 
curve may appear broken in several parts. 

For each of the values of 2V r considered in this 
graphical survey, the extinction curve for about 60 
different positions of P0 were drawn out; Fig. 2 shows 
some typical examples. 

Many of these curves were then transferred to a 
sphere, which was quite easy, with two main purposes: 

(1) To see whether at the points X, Y and Z the 
extinction curves had any special geometrical proper- 
ties, especially with regard to curvature or torsion, 
which might lead to their determination on the ex- 
perimentally-obtained extinction curve. This analysis 
is not possible in the projection owing to its distortion. 
This idea proved unsuccessful, so we proceeded to the 
second one: 

(2) To see how many triangles as defined above can 
be located on each of the extinction curves. This was 
done on the sphere by means of a spherical triangle 
with its three angles of 90 ° , made out of wire thick 
enough to keep its shape. The sides of this wire triangle 
had the same radius as the sphere. 

As all triangles that  might exist have two vertices 
on the equatorial curve and one on the polar curve, 
the wire triangle was moved on the sphere, keeping 
two of its vertices on the equatorial curve and drawing 
at the same time the locus of the third vertex. This 
procedure showed that  there are three different cases: 

(a) P0 is not on any of the three principal planes of 
the indicatrix. This is the general case. There are two 
triangles: one is actually the set of points X YZ, and 
will be called the 'true triangle'; and another one, 
which is obviously not the solution of our problem, 
and which will be called the 'ghost triangle'. 

(b) P0 is on any of the three principal planes of the 
indicatrix. In this case the extinction curve is sym- 
metric relative to the principal plane of the indicatrix 
which contains P0; only one triangle is found, and it 
it is the true one. Actually what happens is that  when 

F v 

\i 

Fig. 2. (a) Some ex t inc t ion  curves for 2 V  r = 46 ° (or 134°). Broken lines: circular sections. A,  B, G and  D are four  different  
posit ions of P0 in the  plane X Z ,  and  therefore the  corresponding ext inc t ion  curves, a, b, c and  d, are symmet r i c  relative to 
this  plane.  (b) Some ex t inc t ion  curves for 2 V r ~ 90 °. Broken lines: circular sections. A,  B, C and  D are four  different  posit ions 
of P0, and  a, b, c and  d are t he  corresponding ext inc t ion  curves. 

28* 
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Fig.  3. (a) An ext inct ion  curve wi th  the  locus (broken line) of the  th i rd  ve r tex  of a ' tr iangle '  while the  o the r  two  move  on the  
equator ia l  curve.  U, V and  W are the  vert ices  of the  'ghost  t r iangle ' ;  X,  Y and Z are the  ver t ices  of the  ' t rue  t r iangle ' .  
(b) Three  of the  ex t inc t ion  curves  of Fig. 2(b), each wi th  its ghost  tr iangle (broken lines), one side of which passes t h r o u g h  
B,  C and  D respect ively.  (B, G and  D are the  posi t ions of P0 corresponding to the  curves  shown.) (c) The p lo t t ing  of the  
ex t inc t ion  directions wi th  the  one-axis s tage goniometer .  P0 is the  goniometer  axis. The numbers  on the  grea t  circles th  rough 
Po are the  corresponding values  of q~ (goniometer  readings),  and  the  dots  on t h e m  are the  ext inc t ion  direct ions (v ib ra t ion  
directions) given b y  the  readings 01 and 0 2 on the  microscope stage. 

P0 approaches one of the principal planes of the indi- 
catrix, the ghost triangle tends to coincide with the 
true triangle. 

(c) Po coincides with one of the three axes of the 
indicatrix. In this particular case an infinite number of 
triangles is found, as the polar curve is reduced to the 
point P0 (which is one of the three axes of the indi- 
catrix), and the equatorial curve becomes a great 
circle perpendicular to P0. 

The operation of drawing the locus of the third ver- 
tex of the triangle while the other two move on the 
equatorial curve was then performed for many typical 
cases in the stereographic projection; this is more 
accurate than doing it on the sphere, but takes more 
time as the triangle does not keep its shape and size 
in the projection while it moves on the sphere. Fig. 3 (a) 
shows a drawing of an extinction curve, with its locus 
for the third vertex of the triangle. 

We will refer now to the general case. Although it 
could not be proved mathematically, the analysis of 
our many drawings had led to the indubitable con- 
clusion that  there are no more than two triangles. 
But, for this method to be of any use, it would be 
necessary to find a way to decide which of the two 
triangles thus determined on the experimental ex- 
tinction curve is the true one. Close inspection of the 
drawings showed a very surprising fact: in all of them 
the ghost triangle seemed to have one of its vertices 
90 ° away from Po. Or, in other words, Po always lies 
on one side of the ghost triangle (Fig. 3(b)). This 
could, in fact, be proved (see § 5.2), and constitutes, 
therefore, the required means of identifying the ghost 
triangle. 

3. Experimental procedure 
(a) The crystal is mounted on the one-axis stage 
goniometer, and the extinction curve for that  partic- 

ular setting is plotted on a stereographic projection in 
the way described in the 1950 paper and reviewed in 
§ 1 of the present paper. Fig. 3 (c) indicates the plotting 
of the points for a goniometer showing increasing 
readings when turned away from the observer, and 
for a rotating microscope stage showing increasing 
readings when turned clockwise (numbered anti- 
clockwise). The letters 0 and T are here interc, anged, 
as compared to their use in the 1950 and 1951 papers, 
in order to conform to the usual nomenclature in 
analytical geometry. The numbers on the great circles 
are the corresponding values of q~ (readings on the 
goniometer), and the dots on them are the extinction 
directions (vibration directions) as obtained through 
the readings of 0 on the microscope stage. 

There are two sets of points (extinction directions), 
one for 01 and the other for 0~. One of these sets of 
points will give the equatorial curve, and the other set 
will give the polar curve; and these two curves con- 
stitute the extinction curve for that  particular setting 
of the crystal. 

During the reading of the extinction directions the 
crystal should be immersed in a drop of liquid of 
refractive index approximately equal to the average 
index of the crystal; this is easy to achieve on the one- 
axis stage goniometer. 

(b) The next step is the determination of the three 
axes of the. indicatrix, in other words, the true triangle. 
Two of its vertices lie on the equatorial curve; there- 
fore two .points of the latter which are 90 ° apart are 
chosen, and the pole of the great circle that  passes 
through them is plotted. By repeating this for several 
such pairs of points, taken in turn, the locus of the 
third vertex of the triangle is obtained (Figs. 3(a) 
and 5). This locus intersects the polar curve at two 
points, thus determining the two triangles. In order 
to know which is the 'true' one and which is the 



N. J O E L  AND I S A B E L  GARAYCOCHEA 403 

'ghost' one, it is sufficient to remember that  one of the 
vertices of the ghost triangle is 90 ° away from Po 
(the goniometer axis). In fact, the ghost triangle can 
be found immediately after having plotted the ex- 
tinction curve: determine the point U of the equatorial 
curve which is 90 ° away from P0 and draw the great 
circle of which U is the pole; this circle will intersect 
the extinction curve at the points V and W. U, V 
and W are the vertices of the ghost triangle. 

If the extinction curve has a plane of symmetry, 
which means that  P0 is in one of the three principal 
planes of the indicatrix, the solution is immediate, 
for in this case the two triangles coincide and their 
location is determined in the straightforward manner 
described in the last paragraph for the ghost triangle. 

If the equatorial curve is a great circle, the polar 
curve is reduced to the point P0. The latter is in this 
case one of the axes of the indicatrix; and the other 
two cannot be determined geometrically but only 
through measurements of refractive indices at points 
along the equatorial curve. There is hardly the need 
to add that  the occurrence of this particular case has 
an extremely small probability, unless one actually 
tried to obtain it. 

(c) As to the identification of the three axes, it is 
already known that Y is on the equatorial curve. To 
determine whether the axis on the polar curve is 
X or Z, use can be made of a compensator in the usual 
way (one-wavelength retardation plate, wedge, Berek 
compensator, etc.) making use of the fact that  all 
points of the equatorial curve represent vibrations 
restricted to the range a-fl if it contains the X axis, 
or to the range fl-7 ff it contains the Z axis. 

I t  remains to be decided which of the two axes 
contained in the equatorial curve is Y. This cannot 
in general be done with the compensator or by means 
of the interference colours, owing to the variable thick- 
ness of the crystal sections. But it may be attempted 
in one of the following ways: 

(i) By means of the Becke-line effect.--If the liquid 
in which the crystal is immersed happens to have its 
refractive index between the two main refractive 
indices corresponding to the two axes contained in the 
equatorial curve, it is easy to find which of the two is 
the Y axis by observing the Becke-hne effect in dif- 
ferent positions of the goniometer. For instance, ff 
X and Y are on the equatorial curve, then when X 
(or a point near it) is horizontal the refractive index 
of the crystal will be smaller than that  of the liquid; 
when Y is horizontal the reverse will be true. 

(ii) By trying to observe an interference figure.m 
Even with a poor interference figure, which by itself 
would have been insufficient to ascertain the orienta- 
tion of the ellipsoid, it might be possible to decide now 
Which of the two known directions belongs to the Y 
axis (perpendicular to the optic axial plane of the 
crystal) and which belongs to the other axis (either 
X or Z, bisectors of the angles formed by the optic 
axes). 

(iii) By observing the shape of the extinction curve. 
--This may give a better clue the bigger the polar 
curve or the more the equatorial curve departs from a 
great circle. In fact, when P0 approaches a circular 
section, a good deal of the polar curve runs close to it 
as well, i.e. in the region of the polar curve around P0; 
and a part of the equatorial curve (two symmetric 
parts) also runs close to the same circular section. 
Therefore, an attempt to fit the two circular sections 
between the equatorial and the polar curves, both of 
them passing of course through Y, may in some cases 
decide which of the two axes on the equatorial curve 
is Y. 

Thus, the three axes of the indicatrix have been 
located. 

If also the three principal refractive indices have 
to be measured, this can be done by bringing in turn 
each of the three axes of the indicatrix into the plane 
of the microscope stage and using the well known 
Becke-line method. For this, and also for the test 
described in paragraph (i) of this § 3, it is necessary 
to know which of the two extinction directions cor- 
responding to a given position of the goniometer is 
set parallel to the vibrations transmitted by the 
polarizer. 

As a final remark on the advantage of this method 
for X-ray crystallography, we would like to add that  
it can also be used with the crystal already mounted 
on the holder of the diffraction camera, with the help 
of a vertical goniometric arrangement which allows 
the crystal to rotate in the liquid contained in a small 
glass cell. The observations can be carried out by 
means of a microscope such as the one attached to 
single-crystal diffraction cameras and a simple polar- 
izing outfit such as the convenient Perutz polarizing 
attachement (Perutz, 1949) made by Unicam. With 
an arrangement such as this we have also been able 
to use this method on crystals of macroscopic size. 

4. Accuracy tes ts  

The method described in this paper for determining 
the indicatrix was tried out by us on several biaxial 
crystals. The accuracy of the results depends on the 
particular setting of the crystal, as there are favour- 
able and unfavourable settings. 

One test on a triclinic crystal is shown in Fig. 4, 
where the theoretical extinction curve, drawn after 
the indicatrix had been determined, is compared with 
the experimental curve. More tests of this kind were 
carried out, with similar results, on other biaxial 
crystals such as aragonite, ammonium oxalate, sodium 
pyrophosphate and zinc sulphate. 

More direct tests were also carried out, of which 
an example is shown in Fig. 5. A cleavage fragment 
of anhydrite (orthorhombic) with well developed 
pinacoidal cleavages was chosen. The positions of the 
axes of the indicatrix, as determined by the method 
under discussion, are compared with the poles of the 



404 'EXTINCTION CURVE' IN THE INVESTIGATION OF THE OPTICAL INDICATRIX 

Y 

°2 

\ '4 II / \ / 

Fig. 4. (a) An experimental extinction curve for a crystal of CuSO 4. 5H20 (triclinic); the orientation of the indicatrix was un- 
known. P0 is the position of the rotation axis. X, Y and Z are the positions of the axes of the ellipsoid as determined from 
the extinction curve. (b) Full line: same experimental curve of (a), with the Z axis transferred to the centre of the projection, 
for comparison. Dotted line: theoretical extinction curve drawn after the relative positions of P0 and the indicatrix had been 
determined. Broken line: circular sections, 2V v ~ 122 °. 

Fig. 5. (a) Anhydrite, CaS04, orthorhombic, 2Vv ---- 42 °. Extinction curve (full line), locus of the third vertex (broken line), 
ghost triangle UVW, and true triangle X Y Z ,  as determined by the present method. Points A and B next to X and Z are 
the poles of pinacoids of the crystal; the errors in the directions of X and Z are about 1 °. The two circular sections (dotted 
line) have been added. (b) Anhydrite, similar to (a) but with a different setting. The equatorial curve departs more from a 
great circle and the locus of the third vertex becomes in this case a larger curve, making the determination of X Y Z  more 
accurate. The errors on Y and Z are shown; they are less than 1% 

(In both (a) and (b) the errors appear exaggerated to avoid confusion.) 

p inaco ida l  p lanes  of t he  c rys ta l :  on s y m m e t r y  re- 
qu i r emen t s  t h e y  should  coincide; t he  expe r imen ta l  
d e p a r t u r e  is a b o u t  1% Fig.  5(b) corresponds to  a 
more  f avourab le  se t t ing  of the  c rys ta l  t h a n  Fig. 5(a) :  
i t  can  be seen t h a t  t h e  locus of the  th i rd  ve r t ex  of the  
t r i ang le  is a la rger  curve in  Fig.  5(b); th i s  means  t h a t  
t he  pos i t ion  of t he  t h i r d  ve r tex  is more sens i t ive  to  a 

d i sp l acemen t  of t he  o ther  two vert ices  a long the  
equa to r i a l  curve.  This  depends,  as can also be seen 
b y  compar i son  of these  two figures,  on how m u c h  the  
equa to r i a l  curve depar t s  f rom a g rea t  circle. 

p lane  in te rsec t s  the  ell ipsoid a long a n  ellipse whose  
axes D 1 a n d  Dg. pass  t h r o u g h  t h e  surface  of t h e  
ell ipsoid a t  four  po in t s  El ,  E~, E~, E~. The  locus of 
these  po in t s  E when  t h e  d i a m e t r a l  p l ane  ro t a t e s  r o u n d  
the  l ine OP o is the  ex t i nc t i on  curve.  Def ined  in  t h i s  
way ,  t h e  e x t i n c t i o n  curve  lies on t h e  el l ipsoid;  bu t ,  
as has  been said  earlier,  i t  is more conven ien t  to  p ro jec t  

i t  r ad i a l ly  on to  a sphere  of un i t  r ad ius  concent r ic  w i t h  
the  ellipsoid. 

W e  will  fol low the  n o t a t i o n  of Wi l son ' s  Vector 
Ana lys i s  (1943). 

5. M a t h e m a t i c a l  t r e a t m e n t  

The  m a t h e m a t i c a l  def in i t ion  of the  ex t i nc t i on  curve  
is the  fol lowing:  L e t  P0 be a po in t  on the  surface of an  
ell ipsoid ( the opt ica l  ind ica t r ix )  whose cent re  is O, 
a n d  consider  a d i a m e t r a l  p lane  t h r o u g h  OPo. This  

5.1. The equations of  the extinction curves 

The  e q u a t i o n  of t h e  ind ica t r ix  (refract ive i n d e x  
ellipsoid) 

m a y  be expressed b y  means  of t he  dyad ic  
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= ~ -2 i i  + fl-2jj + ~ - 2 k k  

and the vector 
r = x i+y j  +zk  

as follows: 
r . ¢ . r  = 1 .  (1) 

The cones of constant refractive index n: 

1 1 1 
o 

intersect the unit sphere, thus determining the curves 
of constant refractive index n. The equations of these 
curves are: 

r . ~ b . r = n  -2, r e =  1.  (2) 

Let ro be the vector drawn from the origin to the 
point Po where the goniometer axis intersects the unit 
sphere. The equations of the great circle tha t  passes 
through the fixed point Po and another point P:,  
which changes when the crystal turns round, are: 

r . r o × r t  = 0 ,  r e =  1.  (3) 

The contact points of this great circle with two of 
the constant refractive index curves are given by:  

r . ( ~ . r ) × ( r o x r x )  = 0 ,  } 
r .  ¢ .  r = n -9 , (4) 

r 2 =  1 . 

The equations of the extinction curves are obtained 
by eliminating r l  and n from equations (4): 

(r .  ~ b . r ) ( r .  ro) = r .  ~ . r o ,  r e = 1 . (5) 

Equations (5) may  be written in Cartesian co- 
ordinates: 

x z y2 z 2) / 
(Xox+yoy+ o ) 

XoX ?Jn ?J ZoZ 
- t -~- ,+--z - ,  xe+y2+zg= 1.  

0¢ 2 p~ ~,~ 

(5') 

5.2. Proof of the existence of a 'ghost triangle' (U, V, W) 
of which one vertex U is 90 ° away from Po 
The equation of the plane normal to ro is 

r . r o  = 0 .  (6) 

Equations (5) and (6) give the vector u which goes 
from the origin to U: 

roxq~.ro 
u = Iro × ~ . r o l  " (7) 

The equation of the plane normal to u is: 

u . r  = 0 (8) 

or  
r . ro×qb . ro  = O. (8') 

I t  follows from (8') tha t  the vectors r, re and ~ . r o  
are coplanar. Hence, equation (8') may be written 
thus: 

r = ).1ro+2~(/). r e .  (8") 

The points V and W are determined by equations 
(5) and (8"). By imposing the condition tha t  r must 
be a unit vector, (8") may  be written: 

re + 2~b. re 
r = , 1(9) 

+ Ire + 2 ~ .  rol  

where 2 = 29./2 v 
By introducing (9) in the first of equations (5), an 

equation of the second degree in ). is obtained: 

t2]tg+t12+to = 0 ,  (10) 
where 

t o = (re.  ~ . r o ) ~ -  ( ~ . r o )  2 , / 
t x = (q~.ro)~(ro.~.ro) - (~ . ro) .  (qS~"r°) ' / (11) 
t~ = (qS.ro)4--(~.ro). (~9.ro)(ro. ~ . r o ) .  

If the solutions 2' and 2" of (10) are introduced 
in (9), the vectors v and w are obtained: 

ro + 2%b. ro ro + 2'%b. ro 
v = ± l r o + 2 ' ~ . r o l  ' w = ±[ro+~t'%b.ro[ " (12) 

I t  has to be proved tha t  

v . w = 0 .  (13) 

The two equations (12) are introduced into (13):  

l+2 '2" (~ . ro )2+( /~ '+2")ro .~ . ro  = O. (13') 
/ 

But, from equation (10), 
. . ~  

2'2" = to/G, ).' +2" = --tl/t 2 • (14) 

By introducing (14) in (13') and making use of (11), 
an identity is obtained. Hence, there is a ' triangle' 
U V W  such tha t  one of its vertices, U, is 90 ° away 
from Po. If Po is in a general position (not on a sym- 
metry plane of the ellipsoid), it cannot be 90 ° away 
from any of the vertices of the ' true triangle'. There- 
fore, U V W  is the 'ghost triangle'. 
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The Structure of P o t a s s i u m  Pyrosulf i te  and the Nature  of the Pyrosulf i te  Ion. 
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The crystal structure of K~S205 has been confirmed and refined by a least-squares method. The 
lattice constants are a ---- 6.936±0.005, b = 6-166±0.008, c = 7"548±0"006 /~, fl = 102 ° 37'±6' .  
The space group is P21/m, and Z = 2. The S~O]- ion can best be described as a thionite-thionate 
ion. The bond lengths are 2.209 A (S-S), 1.499 A (S-O in the thionite group) and 1-431 A, 1-472/~ 
(S-O in the thionato group). 

The experimentally determined bond anglos have been used for an exact calculation of the 
sulphur hybrid orbitals, assuming that  these are orthogonal combinations of 3s and 3p orbitals. 
The results prove that  this assumption is correct for the thionate group, and indicate that  the bond 
lengths arc principally determined by the s character of the hybrid orbitals which form the ~ bonds. 

The crystal  s t ructure of potassium pyrosulfite,  K~S~O5, 
was determined by  Zachariasen (1932). I n  the discus- 
sion of the s t ructure  the  author  emphasizes the fact  
t ha t  the s t ructure  obtained (with S-S bonds) is con- 
t r a ry  to the  formula  given by the  chemists (with 
S - O - S  bonds) (cf. however a discussion by Hi~gg, 
1932). Because of the  importance of this result  for 
theoretical chemistry we found it worth while to re- 
investigate the  structure.  This s tudy  has essentially 
confirmed the earlier results. 

Crystal  data 

A single crystal  of the size 0.3 ×0.1 ×0.07 mm. a was 
enclosed in a capillary tube and used for the X - r a y  
study.  The uni t  cell has been redetermined, using a 
method first described by  Weiss, Cochran & Cole 
(1948). Systematic  errors were eliminated by a method 
of extrapolat ion worked out by LSfgren (1957). 

The new results are (the old values within brackets);  

a=6 .936~-0 .005  • (6-95 /~), 
(6.19 A), c - - 7 . 5 4 8 ± 0 . 0 0 6  h, 
102 ° 37 '±6 '  (102 ° 41'). 

b = 6"166+0.008 A 
(7.55 J~) and fl = 

The space group is P21/m and Z = 2. The cal- 
culated density is 2.34 g.cm. -a (found 2.3 g.em.-3). 

Weissenberg photographs were taken  with Cu Kc~ 
radiat ion around the  [110] axis (five layer lines). The 
intensities were visually estimated, and relative IFI e 
vMues were calculated, using Lu 's  (1943) curves. 

Refinement  of the structure 

A least-squares refinement of the  suggested s t ructure  
was made  on IBM 704 by Dr D. Sayre. The final re- 
sults obtained are:  

x y z B (A ~') 
K I 0.215 0.250 0"936 1.7 
KII 0"639 0"250 0"673 1.2 
SI 0.027 0.250 0.329 1.4 
SII 0.702 0.250 0"238 1-1 
OI 0.078 0.051 0"235 2.4 
Oil 0.632 0"053 0.314 2.5 
OVI 0.660 0-250 0-043 2.7 

The reliability factor  is 0.136. A table with the ob- 
served and calculated s tructure factors can be ob- 
ta ined from this Inst i tute .  

The individual temperature  factors have reasonable 
values. The variations obtained for the three oxygen 
atoms cannot  easily be interpreted, but  are probably  
not  significant. The difference between KI and K~  can 

be explained by the fact that KI~ is more narrowly 
enclosed by oxygen atoms than  KI (Table 1, vide infra). 
I t  is quite na tura l  t h a t  Sii surrounded by three oxygen 
and one sulphur has a smaller B value than  Si, which 
is surrounded by only two oxygen and one sulphur 
(Fig. 1, vide infra). 

The s tandard  deviations in the  atomic positions 
calculated from the residuals of the least-squares 
refinement would give the following s tandard  devia- 
tions in the bond lengths: 0.002 /~ for S-S,  0-004 /~ 
for S-O and K-O,  and 0.008 .~ for 0 - O .  In  the struc- 


